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1. 

Several studies are available on vibrating circular plates of polar orthotropy [1–4]. On the
other hand very limited information is available on vibrating circular plates of rectangular
orthotropy, the problem being of technical importance in several technological
applications, e.g., printed circuit boards [5]. The present study deals with the determination
of the fundamental frequency of transverse vibration of: (1) a solid, clamped circular plate
of rectangular orthotropy, Figure 1(a); (2) a circular annular plate whose material obeys
the same constitutive relations, clamped at the outer boundary and free at the inner
contour, Figure 1(b).

The same polynomial co-ordinate functions which satisfy identically the outer, essential
boundary conditions are used for both problems. Clearly, in the case of the doubly
connected plate, the energy functional is evaluated between the inner and outer boundaries
[6]. The fundamental eigenvalue is determined by means of the optimized Rayleigh–Ritz
method. Good engineering accuracy is achieved in the case of an isotropic plate [7].

2.   

Using Lekhnitskii’s classical notation [1] one expresses the governing functional in the
form
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where W(x, y) is the amplitude of transverse vibration. As shown in previous studies [4, 8]
one is able to approximate the fundamental mode of vibration of isotropic circular plates
by means of the polynomial co-ordinate function

W2Wa (x, y)=A0 (ag − rg)2, r=zx2 + y2, (2a, b)

where g is Rayleigh’s optimization parameter.
Expression (2a) constitutes the ‘‘base function’’ used in many elastic stability and

vibrations problems of isotropic nature [8]. The accuracy of the results can be improved
by taking additional coordinate functions. One has then

Wa (x, y)= s
N

n=0

An (ag − rg)rzn. (3)
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Figure 1. Vibrating structural systems under study.

In the present study numerical values of the fundamental frequency coefficient
V1 =zrh/D1v1 a2 have been obtained for N=0 and N=1.

Substituting equation (3) in equation (1) and requiring that

1J/1An =0 (n=0, 1, . . . , N), (4)

one obtains a homogeneous linear system of equations in the An’s. The non-triviality
condition yields a secular determinant whose lowest root constitutes the fundamental
frequency coefficient. Since V1 is an upper bound with respect to the exact result of the
eigenvalue, by minimizing it with respect to g one is able to optimize V1.

Admittedly in the case of rectangular orthotropic plates the mode shapes are also
functions of the azimuthal co-ordinate u but, as a first order approximation, it seems
reasonable to disregard this variation when determining the fundamental frequency
parameter.

3.  

Table 1 depicts values of V1 for the isotropic plate for which

D1 =D2 =D3 =D, (5)

where D3 =D1 n2 +2Dk . The values of V1 =zrh/Dv1 a2 are determined for n2 = n=1/3
in order to compare with the exact results available in reference [7]. The agreement with

T 1

Values of V1 =zrh/Dv1 a2 in the case of an isotropic circular plate (n=1/3) clamped at
the outer boundary.

N=0 N=1
ZXXXXCXXXXV ZXXXXCXXXXV

b/a g V1 g V1 [7]

0* 1·845 10·245 1·973 10·216 –
0·01 1·841 10·244 1·967 10·217 –
0·1 1·705 10·277 1·601 10·267 10·18
0·2 1·518 10·524 1·273 10·428 10·34
0·3 1·485 11·446 1·240 11·374 11·37
0·4 1·577 13·558 1·318 13·521 13·54
0·5 1·761 17·627 1·514 17·614 17·51
0·6 2·079 25·558 1·940 25·556 25·60
0·7 2·635 43·003 2·958 42·999 42·38
0·8 3·768 92·886 1·716 92·860 85·32
0·9 7·190 360·377 3·519 360·130 –

* Solid plate (exact value of V1 is 10·2158).
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T 2

Values of V1 =zrh/D1v1 a2 in the case of an isotropic circular plate clamped at the outer
boundary (D2 /D1 =1/2; Dk /D1 =1/3; n2 =1/3).

N=0 N=1
ZXXXXCXXXXV ZXXXXCXXXXV

b/a g V1 g V1

0* 1·845 9·235 1·973 9·208
0·01 1·841 9·234 1·967 9·209
0·1 1·705 9·263 1·601 9·255
0·2 1·518 9·486 1·273 9·399
0·3 1·485 10·318 1·240 10·253
0·4 1·574 12·221 1·317 12·188
0·5 1·761 15·889 1·513 15·887
0·6 2·027 23·037 1·940 23·036
0·7 2·635 38·762 2·958 38·759
0·8 3·768 83·726 1·712 83·703
0·9 7·190 324·840 3·514 324·617

* Solid plate.

the exact results is very good from an engineering viewpoint except for the case where
b/a=0·8, the difference being of the order of 9%. On the other hand it is difficult to assess
the accuracy of the ‘‘exact’’ results available in the literature.

Table 2 shows values of V1 =zrh/D1 v1 a2 for orthotropic circular plates for which
D2 /D1 =1/2, Dk /D1 =1/3, and n2 =1/3. For b/a=0 (solid plate) the one term solution
predicts V1 =9·235 while the two term solution yields V1 =9·208. Lekhnitskii [1, p. 432]
gives an approximate expression of v1 which in terms of V1 becomes

V1 =6·33z1+0·667D3 /D1 +D2 /D1. (6)

This expression is, certainly, only valid for the simply connected clamped plate. For the
orthotropic case under consideration equation (6) yields V1 =9·317 which is almost 1%
higher than the value determined using the one term Rayleigh optimization procedure.

For a clamped solid isotropic plate, equation (6) yields V1 =10·32 while with the
optimized procedure one obtains V1 =10·245, the exact result being 10·2158. The two
therm optimized approach yields V1 =10·216.

The present method is quite simple and straightforward. A similar approach can be used
in the case where the plate is simply supported at the outer edge.
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